Plutonium targets the p16 gene for inactivation by promoter hypermethylation in human lung adenocarcinoma.
نویسندگان
چکیده
Lung cancer from radon or (239)plutonium exposure has been linked to alpha-particles that damage DNA through large deletions and point mutations. We investigated the involvement of an epigenetic mechanism, gene inactivation by promoter hypermethylation in adenocarcinomas from plutonium-exposed workers at MAYAK, the first Russian nuclear enterprise established to manufacture weapons plutonium. Adenocarcinomas were collected retrospectively from 71 workers and 69 non-worker controls. Lung adenocarcinomas were examined from workers and non-worker controls for methylation of the CDKN2A (p16), O(6)-methylguanine-DNA methyltransferase (MGMT), death associated protein kinase (DAP-K), and Ras effector homolog 1 genes (RASSF1A). The prevalence for methylation of the MGMT or DAP-K genes did not differ between workers and controls, while a higher prevalence for methylation of the RASSF1A gene was seen in tumors from controls. In marked contrast, the prevalence for methylation of p16, a key regulator of the cell cycle, was increased significantly (P = 0.03) in tumors from workers compared with non-worker controls. Stratification of plutonium exposure into tertiles also revealed a striking dose response for methylation of the p16 gene (P = 0.008). Workers in the plutonium plant where exposure to internal radiation was highest had a 3.5 times (C.I. 1.5, 8.5; P = 0.001) greater risk for p16 methylation in their tumors than controls. This increased probability for methylation approximated the 4-fold increase in relative risk for adenocarcinoma in this group of workers exposed to plutonium. In addition, a trend (P = 0.08) was seen for an increase in the number of genes methylated (> or =2 genes) with plutonium dose. Here we demonstrate that exposure to plutonium may elevate the risk for adenocarcinoma through specifically targeting the p16 gene for inactivation by promoter methylation.
منابع مشابه
Possible Down Regulation of the p16 Gene Promoter in Individuals with Hepatocellular Carcinoma
BACKGROUND The p16 tumor suppressor gene is an important negative regulator of the cell cycle. Inactivation of p16, especially via promoter hypermethylation, has been found in numerous human cancers such as breast, lung, colorectal, and liver. OBJECTIVES To determine the role of epigenetic methylation in p16 regulation in Iranian patients with hepatocellular carcinoma (HCC). PATIENTS AND ME...
متن کاملTwo Steps Methylation Specific PCR for Assessment of APC Promoter Methylation in Gastric Adenocarcinoma
Gastric Cancer (GC) is the second most common cancer in the world and a leading cause of cancer-related mortality. Methylation of promoter CpG islands (CGIs) belonging to tumor suppressor genes causes transcriptional silencing of their corresponding genes leading to carcinogenesis and other disorders. Adenomatous Polyposis Coli (APC) a tumor suppressor gene is inactivated by methylation of prom...
متن کاملHypermethylation of E-Cadherin and Estro-gen Receptor- Gene Promoter and Its Association with Clinicopathological Features of Breast Cancer in Iranian Patients
Background: Aberrant methylation of cytosine-guanine dinucleotide islands leads to inactivation of tumor suppressor genes in breast cancer. Tumor suppressor genes are unmethylated in normal tissue and often become hypermethylated during tumor formation, leading to gene silencing. We investigated the association between E-cadherin (CDH1) and estrogen receptor-α (ESRα) gene promoter methylation a...
متن کاملHypermethylation of the p16 (Ink4a) promoter in B6C3F1 mouse primary lung adenocarcinomas and mouse lung cell lines.
Primary lung tumors from B6C3F1 mice and mouse lung cell lines were examined to investigate the role of transcriptional silencing of the p16 (Ink4a) tumor suppressor gene by DNA hypermethylation during mouse lung carcinogenesis. Hypermethylation (>/=50% methylation at two or more of the CpG sites examined) of the p16 (Ink4a) promoter region was detected in DNA from 12 of 17 (70%) of the B6C3F1 ...
متن کاملIncrease in the Frequency of p16 Gene Inactivation by Hypermethylation in Lung Cancer during the Process of Metastasis and Its Relation to the Status of p53
The p16 gene, which is a tumor suppressor gene, is frequently altered in lung cancers. Hypermethylation of the promoter region of the p16 gene seems to be the major mechanism through which p16 become inactivated. Hypermethylation of the p16 gene was reported to occur at an early stage in lung cancer. To determine whether the change in p16 methylation status occurs at the late stage in the progr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Carcinogenesis
دوره 25 6 شماره
صفحات -
تاریخ انتشار 2004